首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   14篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   8篇
  2011年   6篇
  2010年   7篇
  2009年   18篇
  2008年   13篇
  2007年   14篇
  2006年   14篇
  2005年   10篇
  2004年   13篇
  2003年   17篇
  2002年   6篇
  2001年   5篇
  2000年   1篇
  1999年   5篇
  1997年   3篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1986年   2篇
  1984年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1966年   2篇
排序方式: 共有206条查询结果,搜索用时 31 毫秒
31.
In isolated rat pancreatic -cells, hypotonic stimulation elicited an increase in cytosolic Ca2+ concentration ([Ca2+]c) at 2.8 mM glucose. The hypotonically induced [Ca2+]c elevation was significantly suppressed by nicardipine, a voltage-dependent Ca2+ channel blocker, and by Gd3+, amiloride, 2-aminoethoxydiphenylborate, and ruthenium red, all cation channel blockers. In contrast, the [Ca2+]c elevation was not inhibited by suramin, a P2 purinoceptor antagonist. Whole cell patch-clamp analyses showed that hypotonic stimulation induced membrane depolarization of -cells and produced outwardly rectifying cation currents; Gd3+ inhibited both responses. Hypotonic stimulation also increased insulin secretion from isolated rat islets, and Gd3+ significantly suppressed this secretion. Together, these results suggest that osmotic cell swelling activates cation channels in rat pancreatic -cells, thereby causing membrane depolarization and subsequent activation of voltage-dependent Ca2+ channels and thus elevating insulin secretion. calcium ion; swelling; patch-clamp; gadolinium  相似文献   
32.
It has been well established that eggs of insects, including those of the silkworm Bombyx mori, contain various molecular species of ecdysteroids in free and conjugated forms. In B. mori eggs, 20-hydroxyecdysone (20E) is a physiologically active molecule. In nondiapause eggs, 20E is produced by the conversion of maternal conjugated ecdysteroids (ecdysteroid-phosphates) and by de novo biosynthesis. In contrast, in diapause eggs, neither of these metabolic processes occurs. In de novo biosynthesis of 20E in B. mori eggs, hydroxylation at the C-20 position of ecdysone, which is catalyzed by ecdysone 20-hydroxylase, is a rate-limiting step. Furthermore, we found that a novel enzyme, called ecdysteroid-phosphate phosphatase (EPPase), specifically catalyzes the conversion of ecdysteroid-phosphates to free ecdysteroids. The developmental changes in the expression pattern of EPPase mRNA correspond closely to changes in the enzyme activity and in the amounts of free ecdysteroids in eggs. EPPase is localized in the cytosol of yolk cells, and the bulk of maternal ecdysteroid-phosphates is bound to vitellin and stored in yolk granules. The vitellin-bound ecdysteroid-phosphates are scarcely hydrolyzed by EPPase. Therefore, to examine how ecdysteroid-phosphates are hydrolyzed by EPPase during embryonic development further investigations were focused on yolk granules. Recent data indicate that acidification in yolk granules, induced by vacuolar H(+)-ATPase, triggers the dissociation of ecdysteroid-phosphates from the vitellin-ecdysteroid-phosphates complex and the dissociated ecdysteroid-phosphates are released from yolk granules to the cytosol. To explain the process of the increase in the level of 20E during embryonic development in B. mori eggs, a possible model is proposed.  相似文献   
33.
34.
A cell line designated NYGM was established from a human cerebral glioblastoma multiforme (GBM) obtained from a 75-year-old Japanese woman. The cell line has grown slowly without interruption and has been propagated continuously by serial passages (more than 80 passage) during the past 3 years. The cultured cells were fusiform or polyhedral in shape. The population doubling time was 24 hours. The chromosomal number varied between 77 and 88, with modal chromosomal number of 84. NYGM cells concomitantly expressed MET receptor tyrosine kinase (a product of c-met protooncogene) and its ligand HGF/SF (hepatocyte growth factor/scatter factor), as well as HGF activator and HGF activator inhibitors. The cells might be useful for the study of pericellular regulation of HGF/SF-MET signaling and HGF activation of GBM cells.  相似文献   
35.
A series of substituted 4-alkoxy-2-aminopyridines 2, which were formally derived from neuropeptide Y1 antagonist 1 by replacing the morpholino portion with alkoxy groups, were synthesized and evaluated as neuropeptide Y Y1 receptor antagonists. Primary structure-activity relationships and identification of potent 4-alkoxy derivatives are described.  相似文献   
36.
K Kanatani  M Oshimura    K Sano 《Applied microbiology》1995,61(3):1061-1067
Acidocin A, a bacteriocin produced by Lactobacillus acidophilus TK9201, is active against closely related lactic acid bacteria and food-borne pathogens including Listeria monocytogenes. The bacteriocin was purified to homogeneity by ammonium sulfate precipitation and sequential ion-exchange and reversed-phase chromatographies. The molecular mass was determined by high-performance liquid chromatography gel filtration to be 6,500 Da. The sequence of the first 16 amino acids of the N terminus was determined, and oligonucleotide probes based on this sequence were constructed to detect the acidocin A structural gene acdA. The probes hybridized to the 4.5-kb EcoRI fragment of a 45-kb plasmid, pLA9201, present in L. acidophilus TK9201, and the hybridizing region was further localized to the 0.9-kb KpnI-XbaI fragment. Analysis of the nucleotide sequence of this fragment revealed that acidocin A was synthesized as an 81-amino-acid precursor including a 23-amino-acid N-terminal extension. An additional open reading frame (ORF2) encoding a 55-amino-acid polypeptide was found downstream of and in the same operon as acdA. Transformants containing this ORF2 became resistant to acidocin A, suggesting that ORF2 encodes an immunity function for acidocin A. The 7.2-kb SacI-XbaI fragment containing the upstream region of acdA of pLA9201 was necessary for acidocin A expression in the acidocin A-deficient mutant, L. acidophilus TK9201-1, and other Lactobacillus strains.  相似文献   
37.
Mutants of Escherichia coli defective in the HemA protein grow extremely poorly as the result of heme deficiency. A novel hemA mutant was identified whose rate of growth was dramatically enhanced by addition to the medium of low concentrations of translational inhibitors, such as chloramphenicol and tetracycline. This mutant (H110) carries mutation at position 314 in the hemA gene, which resulted in diminished activity of the encoded protein. Restoration of growth of H110 upon addition of the drugs mentioned above was due to activation of the synthesis of porphyrin. However, this activation was not characteristic exclusively of cells with this mutant hemA gene since it was also observed in a heme-deficient strain bearing the wild-type hemA gene. The activation did not depend on the promoter activity of the hemA gene, as indicated by studies with fusion genes. It appears that partial inhibition of protein synthesis via inhibition of peptidyltransferase can promote the synthesis of porphyrin by providing an increased supply of Guamyl-tRNA for porphyrin synthesis. Glutamyl-tRNA is the common substrate for peptidyltransferase and HemA.  相似文献   
38.
Lactobacillus acidophilus JCM 1132 produces a heat-stable, two-component bacteriocin designated acidocin J1132 that has a narrow inhibitory spectrum. Maximum production of acidocin J1132 in MRS broth was detected at pH 5.0. Acidocin J1132 was purified by ammonium sulfate precipitation and sequential cation exchange and reversed-phase chromatographies. Acidocin J1132 activity was associated with two components, termed alpha and beta. On the basis of N-terminal amino acid sequencing and the molecular masses of the alpha and beta components, it is interpreted that the compounds differ by an additional glycine residue in the beta component. Both alpha and beta had inhibitory activity, and an increase in activity by the complementary action of the two components was observed. Acidocin J1132 is bactericidal and dissipates the membrane potential and the pH gradient in sensitive cells, which affect such proton motive force-dependent processes as amino acid transport. Acidocin J1132 also caused efflux of preaccumulated amino acid taken up via a unidirectional ATP-driven transport system. Secondary structure prediction revealed the presence of an amphiphilic alpha-helix region that could form hydrophilic pores. These results suggest that acidocin J1132 is a pore-forming bacteriocin that creates cell membrane channels through the "barrel-stave" mechanism.  相似文献   
39.
The enzyme geranylgeranyl reductase (CHL P) catalyzes the reduction of geranylgeranyl diphosphate to phytyl diphosphate. We identified a tobacco (Nicotiana tabacum) cDNA sequence encoding a 52-kD precursor protein homologous to the Arabidopsis and bacterial CHL P. The effects of deficient CHL P activity on chlorophyll (Chl) and tocopherol contents were studied in transgenic plants expressing antisense CHL P RNA. Transformants with gradually reduced Chl P expression showed a delayed growth rate and a pale or variegated phenotype. Transformants grown in high (500 μmol m−2 s−1; HL) and low (70 μmol photon m−2 s−1; LL) light displayed a similar degree of reduced tocopherol content during leaf development, although growth of wild-type plants in HL conditions led to up to a 2-fold increase in tocopherol content. The total Chl content was more rapidly reduced during HL than LL conditions. Up to 58% of the Chl content was esterified with geranylgeraniol instead of phytol under LL conditions. Our results indicate that CHL P provides phytol for both tocopherol and Chl synthesis. The transformants are a valuable model with which to investigate the adaptation of plants with modified tocopherol levels against deleterious environmental conditions.  相似文献   
40.
Objective: To further address the function of the Y5 receptor in energy homeostasis, we investigated the effects of a novel spironolactone Y5 antagonist in diet-induced obese (DIO) mice. Methods and Procedures: Male C57BL/6 or Npy5r−/− mice were adapted to high-fat (HF) diet for 6–10 months and were submitted to three experimental treatments. First, the Y5 antagonist at a dose of 10 or 30 mg/kg was administered for 1 month to DIO C57BL/6 or Npy5r−/− mice. Second, the Y5 antagonist at 30 mg/kg was administered for 1.5 months to DIO C57BL/6 mice, and insulin sensitivity was evaluated using an insulin tolerance test. After a recovery period, nuclear magnetic resonance measurement was performed to evaluate body composition. Third, DIO mice were treated with the Y5 antagonist alone, or in combination with 10% food restriction, or with another anorectic agent, sibutramine at 10 mg/kg, for 1.5 months. Plasma glucose, insulin, and leptin levels, and adipose tissue weights were quantified. Results: The spironolactone Y5 antagonist significantly reduced body weight in C57BL DIO mice, but not in Npy5r−/− DIO mice. The Y5 antagonist produced a fat-selective loss of body weight, and ameliorated obesity-associated insulin resistance in DIO mice. In addition, the Y5 antagonist combined with either food restriction or sibutramine tended to produce greater body weight loss, as compared with single treatment. Discussion: These findings demonstrate that the Y5 receptor is an important mediator of energy homeostasis in rodents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号